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Numerical analysis of the nonlinear propagation 
of plane periodic waves in a relaxing gas 

By I. S. SOUTHERNf A N D  N. H. JOHANNESEN 
Department of the Mechanics of Fluids, University of Manchester, England 

(Received 31 July 1979 and in revised form 28 November 1979) 

The waves propagating from an oscillating plane piston into a vibrationally relaxing 
gas are calculated by an exact numerical method ignoring viscosity and heat conduc- 
tion. Secondary effects due to the starting of the piston from rest and to acoustic 
streaming can be eliminated from the calculated flows, leaving a truly periodic pro- 
gressive wave which can be analysed and compared with approximate solutions. It is 
found that for moderate amplitude waves nonlinearity is only important as a con- 
vective effect which produces higher harmonics, whereas dissipation is adequately 
described by linear theory. 

1. Introduction 
In several earlier papers members of our department have studied nonlinear wave 

propagation in a vibrationally relaxing gas by numerical integration of the exact 
equations ignoring viscosity and heat conduction. The translational and rotational 
modes are assumed to move through equilibrium states and the only dissipative 
mechanism outside shock waves is the non-equilibrium production of entropy due to 
the lag in the vibrational mode. Hornby & Johannesen (1975) and Kao & Hodgson 
(1978) considered steady wedge and cone flows, respectively, while Dain & Hodgson 
( 1  975) treated the unsteady flow due to an impulsively started piston. The numerical 
calculations were carried out for a pure gas with large vibrational specific heat, but 
Hodgson & Johannesen (1 976) demonstrated that the calculations could be used to 
obtain tentative results relevant to air which has two vibrational modes, both with 
very small vibrational specific heats at  meteorological temperatures, but with vastly 
different, strongly humidity-dependent, relaxation times. 

In this paper we report on the firet stage of a research programme stimulated by the 
current interest in possible nonlinear effects in aircraft-noise propagation, as dis- 
cussed by Pernet & Payne (1971) and by Webster & Blackstock (1978). These are 
essentially long-distance accumulative effects of locally minute departures from linear 
behaviour which are always present in wave propagation. It is only the fact that waves 
decay due to dissipation and spherical spreading that makes them unimportant in 
most practical cases. No precise criterion exists at  the moment for predicting if and 
when they are significant in practice. 

The work completed so far concerns the wave pattern produced in a gas by a 
sinusoidally oscillating piston, but work is in progress on the practically more 

t Present address : Rolls-Royce Ltd, Aero Division, Derby, England. 

0022-1 120/80/4486-1510 $02.00 @ 1980 Cambridge University Press 



344 I .  S. Southern and N .  H .  Johannesen 

important pulsating-sphere problem. Extensions to more complicated oscillations and 
to gases with more than one vibrational mode seem entirely possible. Even the ‘simple ’ 
piston case was found to  have features not generally discussed in the available litera- 
ture on nonlinear acoustics. Of particular interest are the starting and streaming 
effects which can, however, be separated out so that the truly periodic part of the wave 
can be analysed. The wave form is found to  display both steepening and skewness. 

The results throw some light on the relative importance of convection and dissipa- 
tion, and it is found that in the flows calculated the latter can always be described by 
linear theory. This adds support to  methods which combine nonlinear convection 
effects with linear dissipation such as the one proposed by Pernet & Payne (1971) in 
which the Fubini solution is combined with linear dissipation. 

The vibrational specific heat in all our examples is large. This ensures large rates 
of amplitude decay ap.d the absence of shocks except perhaps in the very far field. Our 
comparison of exact calculations with approximate results using the Pernet & Payne 
method does not therefore truly assess its applicability to air, although we present 
some suggestions that it may be improved by including higher-order terms in the 
expansion of the Bessel function appearing in the Fubini solution. The high values of 
the vibrational specific heat lead to large differences between the frozen and equilibrium 
sound speeds and therefore to  large variations in the frequency-dependent linearized 
(Kneser) speed of sound, so that the exact linear expressions have to be used. 

We first outline the basic theory and calculation method and then present in turn 
the isentropic flow results and their approximation, and the linear theory of dissipa- 
tion and attenuation. A brief discussion of starting and streaming effects is followed by 
some typical examples of wave-profile development, and we conclude with examples of 
Fourier analysis of the results and comparison with the Pernet & Payne method. 

2. Basic theory and calculation method 

as those used by Dain & Hodgson (1975). The relaxation equation is 
The basic equations and formulation of their characteristics are exactly the same 

DglDt = pQ(3 - u) = (5 - 4 / 7 ,  (1) 

where u is the vibrational energy and ?F its local equilibrium value, t the time, and p 
the density. The quantity p@ is the relaxation frequency and 7 the relaxation time; 
Q depends on temperature only, but in all numerical calculations @ was assumed to be 
constant in any one flow. Similarly the vibrational specific heat cR (where R is the 
specific gas constant) was assumed to be constant within any one flow. 

The three families of characteristics are: 
(i) the right-hand characteristics 

dxldt = u+a 

dp+padu = - ( y -  l ) p 2 @ ( 5 - g ) d t ;  
on which 

(ii) the left-hand characteristics 
dxldt = u - a  

dp-padu = - ( ~ - I ) p ~ @ ( Y - u ) d t ;  
on which 
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FIQURE 1. The three families of characteristics: x, t diagram. 

(iii) the particle paths 
dx/dt = u 

on which 
dp-a2dp = - ( y -  l )pz@(3-g)dt .  

345 

Here x is the distance measured from the rest position of the piston, u the velocity 
magnitude, and a the frozen speed of sound; p is the pressure and y the frozen specific 
heat ratio. 

The three families are shown for the piston problem on figure 1. If the piston starts 
moving a t  t = 0 the wave front is x = a,t, where suffix 0 indicates rest conditions 
ahead of the wave field. The retarded time co-ordinate is y = t - xo/ao, where x,, is the 
initial (rest) value of x on a particle path. 

The boundary conditions for all the flows calculated are of the form 

1. x, = 0 for t < 0, 

x p  = f ( t )  for t 0,) 

where suffix P refers to the piston and f (t) is of a form which gives a harmonic oscilla- 
tion of the piston. Typical boundary conditions used were 

(6 )  
U 

w 
xp='(l-coswt) 

and 

xP = - 5 w sin wt, 

where u1 is the velocity amplitude on the piston and w the radian frequency. The 
second boundary condition gives zero mean displacement of the piston. 
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The flows are governed by three parameters: .%/ao = e which is always a small 
parameter, c which is never more than O( l) ,  and or which may cover the whole range 
from very small to very large values. 

Excellent surveys of nonlinear acoustic theories have been given by Blackstock 
(1962) and by Rudenko & Soluyan (1977). Blythe (1969) gave a survey of the theories 
of general nonlinear, non-equilibrium flows and pointed out that second-order theories 
can be developed not only by ignoring terms of order e3 but also by ignoring terms of 
order e2c in the small energy limit, and by ignoring terms of order e2w7 and e 2 / w  in 
the low- and high-frequency limits, respectively. 

The low-frequency flows are governed by Burgers’s equation and have been dis- 
cussed extensively in the literature. High-frequency flows are, although amenable to 
approximate theoretical analysis, not of particular practical importance, because the 
neglect of heat conduction and viscosity (and of rotational relaxation) becomes 
progressively less realistic as the frequency increases. We shall therefore concentrate 
on numerical calculation of flows for which w7 is of order unity, although reference 
will be made to both low- and high-frequency flows. 

The numerical solutions were obtained by the usual step-by-step method and will 
be presented as values of the variables plotted as functions of the retarded co-ordinate 
y on particle paths. As the amplitude of the oscillations of a particle path is very small 
the curves thus obtained correspond very closely, in the case of the pressure, to the 
signal that would be received by a microphone positioned a t  the particular value 
of xo. It is not possible to give a precise analysis of the accuracy of the numerical 
results, but numerous checks, including variation of step size and determination of 
shock formation distance, were all satisfactory. The fact that the very low amplitude 
far field turns out to be periodic (repeating) in time is also a strong indication of 
correctness. The amplitude decay rate agreed to four figures with the linear decay 
rate. In  earlier papers using the same approach we found excellent agreement with the 
known exact far-field solution. 

We shall retain the dimensional forms of the variables in most equations but the 
calculated results will be presented in non-dimensional form according to the following 
set of equations in which denotes non-dimensional quantities : 

(2, &-l) = (2, CY,-~)~~(D(RF~)-*, 

(t: 9, G-l) = (4  y, @-1)po@; 

(10) 

( 1 1 )  

a is the linear attenuation rate introduced in 9 4, and To is the ‘rest’ gas temperature. 

3. Isentropic theory and the Fubini approximation 
In  the absence of relaxation the equations of 5 2 simplify to the standard equations 

of one-dimensional unsteady, isentropic flow. These cover not only the case of c = 0 
but also the limiting cases of frozen and equilibrium flow. They are of course well 
known, and exact solutions exist for the sinusoidally oscillating piston. It should, 
however, be emphasized that the term ‘sinusoidal’ is not precise in the context of the 
exact equations: it must be specified which variable is sinusoidal. In  our numerical 
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calculations this will always be the velocity on the piston path, i.e. at  xo = 0 rather 
than at x = 0. 

The solutions of the exact equations or numerical integration of them in character- 
istic form for the boundary condition (6),  showed the familiar steepening of the wave 
profile as the wave propagates, with a shock forming a t  the wave front at  the shock 
formation distance (e.g., see Johannesen & Scott 1978) 

x, = 2ai/(y+ l )u ,w ,  
i.e. a t  the time 

2a0 
(Y + 1)UlW' 

t, = 

We are only concerned with that part of the flow which lies between the piston and 
the left-hand characteristic through (x,, t,). 

If we use the characteristic form of the equations and the relation dxldt = u on a 
particle path, a parametric representation of the particle path can be obtained for the 
boundary condition (6).  The analysis is straightforward and will not be given. The 
result is 

(1+79/(1--Y) u +$ (1 -coswt,), 

(15) 

(16) 

1 x = 2 a (7 + l)ul sin wt,] [ 1 + (7- l)ul sin wt, 
a0 x [ o +  2 2a0 

u = u1 sin wt,, 

where x is xo if t, is zero. 
The following implicit solution for u along a particle path is then easily obtained, 

Various forms of approximate solutions exist; the best known of these is probably 
the one due to Fubini. In general such solutions must be equivalent to a solution of 
the following approximations to (14), (15) and (16),  

(19) 

(20) 

U1 x = xo+- (1  -coswt,), 

u = u1 sin wtp, 

w 

or of the following approximations to equation (17), 
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An alternative to the description ofthe changing wave form as being due to steepen- 
ing, is to examine the growth of higher harmonics. This will be done in $8 by Fourier 
analysing the wave forms. Here we shall discuss the approximate isentropic Fubini 
solution, which will later be combined with linear attenuation theory, and not present 
the results of the exact numerical calculations for isentropic flow except to mention the 
tendency for the nth harmonic to grow as xn-l in the near field, i.e. for xo < x,. 

The Fubini solution is obtained from the implicit solution ( 2 1 ~ ) .  As shown by 
Blackstock (1962) and by Rudenko & Soluyan (1977), an approximate explicit solu- 
tion may be obtained by Fourier analysing this equation. The Fourier coefficients thus 
obtained are in terms of integrals of the type used by Bessel to define his function. 
The following solution is then obtained, 

and is usually attributed to Fubini. Also, if n is an integer, 

r= 0 r ! (n + r )  ! , 

so that, if En is the amplitude of the nth velocity harmonic, 

for x < x,. 

- m ( -  i ) r  (z) n-t2r-1 

u1 r=or!(n+r)! 2x, 

1 nx 12-1 

u.= 

= - n! (-) 2x, 
+O(@+l) 

(23) 

Thus, although equation (22) is not really accurate to more than order 6 it appears 
to explain the behaviour of the higher harmonics already mentioned. Hence, even 
though 

q u l  = O(@-1) 

Un cc xn-1 

the Fubini solution predicts that 

in the near field. Nevertheless, it  must be stressed that the accuracy with which (22) 
describes the behaviour of the third and higher harmonics is so far unknown. Some 
measure of its effectiveness can however be obtained from the following analysis in 
terms of the bousdary condition 

u = ulsinwtp on xp = 0. (25) 

This problem is analogous to the oscillating piston problem, since the Fubini solution 
applies to both cases to order e2 on lines of constant x and xo, respectively. Hence for 
equation (25) a general right-hand characteristic has the form 

x = a o + ~ u l s i n o t p  (t-tp) 
( 2  1 

on which 
u = ulsinwtp. 
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Eliminating t ,  then gives the implicit solution 

on lines of constant x, and this agrees with ( 2 l a )  to order E .  However, the flow with 
equation (25) as the boundary condition can also be determined by solving the exact 
equation for isentropic flow (see Blackstock 1962) 

au y + i  

where X = x and Y = t - x/ao, which to order e2 becomes 

au y + i  au 
-=- ax 2ai us* (29) 

Both this equation which has the solution (21 a )  and equation (28) which has the solu- 
tion (27) can therefore be solved by iteration, since the right-hand sides are small. 

The iterative solution of both the equations will be briefly discussed in the rest of 
this section, for two main reasons. Firstly, both solutions provide an interesting model 
of how higher harmonics are produced in a wave as it propagates. Secondly, because 
the agreement between the Fubini solution and the numerical Fourier analysis 
results, in describing the behaviour of the higher harmonics, requires some explanation, 
particularly since the growth of higher harmonics in a wave in a gas with vibrational 
relaxation are described by using an approximation which employs the Fubini 
solution, in Fj 5. However, it must be stressed that the analysis which will be given is 
not supposed to be a rigorous or full discussion of the problem. That would be a major 
task. Our concern is simply with providing explanations of phenomena for which 
precise descriptions do not appear to exist in the literature. A rigorous iterative 
solution of the oscillating piston problem is given by Blackstock (1962), but the 
following much simpler model will be sufficient for our purpose. 

Firstly consider equation, (29). If the right-hand side is ignored as being small, this 
has the solution 

u = u,sinwY. (30) 

Substituting this solution in the right-hand side of equation (29) then gives 

and this has the solution 
u x  

2% 
u = u,sinwY+’sin 2wY. 

Similarly the next iteration gives 

(32) 

and so on. 
In fact, with each iteration more and more terms in the Fubini solution will be 

generated. Thus the terms in the first three harmonics in (32) are the leading terms in 
these harmonics in the Fubini solution. The term in the fourth harmonic is only part 
of the leading term in the Fubini solution. The rest of this is produced in the next 
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iteration from the first and third harmonics. Hence, the nonlinear term in (29) will 
always lead to the nth harmonic producing 2nth harmonics from itself, and to the 
nth and mth harmonics producing (n + m)th and (n - m)th harmonics. What is more, 
the terms in the solution will always be in sin(nwY) since the Fubini solution is 
symmetric. 

The iterative solution of (28) will obviously be more complicated than that of (29). 
However, three iterations can be done quite easily. The first has the solution given by 
(30), the second the solution given by (31) and the third the solution 

u x  
u,sinwY-- a o u l X  cos w Y + 1 sin 2w Y 

4x: w 2% 

1 2 g  
?A1 x3 a u X 2  a, u1 X 2  

sin 4wY + 5 cos 4wY -- 8x82 4x, w 1 6 e w  1 6 g w  ' 
sin 3 0 ~  + a,u,X cos 3 w ~  + - 3u1 x2 +- 

(33) 

Thus, the extra term in {28) produces cosine terms in the solution, which lead to  an 
asymmetric wave, as well as sine terms, and terms which make the mean of the wave 
x dependent. However, the terms affecting the mean of the wave are due to our 
examining the wave on lines of constant x, rather than on particle paths in the flow. 
No such effect occurs in the oscillating piston problem. Nevertheless, their appearance 
does highlight the difficulty in applying exact results, for the boundary condition 
given by (25), to the oscillating piston problem. 

The solution given by (33) is in fact sufficiently informative for the effect of the 
extra term in (28) to be described simply from (33) and (32). Thus it can be seen that 
the effects of the cosine terms in (33) will be small if 

ao/wX < I .  

This will always be the case, since in the right-hand side of (28) 

a a a0 - By-"' a 0 z - x 1  

so that 
a wx 

&/aoax  - a, > ' 1.  

Thus, the extra term in (28) will only effect the leading term for each harmonic in the 
Fubini solution as long as X is much smaller that  ao/w which is much smaller 
than x,. 

Finally, in linear acoustics the intensity of a wave is proportional to its amplitude 
squared. Thus, the intensity of any harmonic in a wave will be roughly proportional 
to  2;. Hence, if in a simple model ten per cent of the intensity of a pure tone is fed 
into a second harmonic, U1 will only decrease by approximately five per cent. However, 
4, will grow from nothing t o  roughly thirty per cent of the original pure tone ampli- 
tude. This demonstrates how little iil need t o  attenuate for significant levels of high 
harmonics to  be present in a wave. 

The results given in this section will be used for comparison with similar results in 
a gas with vibrational relaxation. In particular, the discussion of the applicability of 



Nonlinear propagation of plane periodic waves 35 1 

the Fubini solution in determining the near field growth of harmonics will Ee of use 
in $ 3  5 and 8. These discuss the approximate method, already mentioned in this section, 
which uses the Fubini solution to determine wave propagation in a gas with vibra- 
tional relaxation. 

4. Linearized dissipation theory 
The linearized theory of sound absorption in a relaxing gas is well known, and in 

most cases further simplifications are introduced after linearization. For the large 
values of c used in the present work it is, however, necessary to use the full linearized 
expressions for the frequency-dependent absorption rate and speed of sound. These 
were probably first given by Herzfeld & Litovitz (1959), but we shall quote the ex- 
pressions without derivation from the recent survey article by Johannesen & Hodgson 
(1979). With their definition of the linear amplitude absorption rate aL and the linear 
speed of sound a,, we have 

aL = wB/ae ,  a L  = Aa,, (34)) (35) 

where we shall in this section for clarity use the suExes e and f to indicate equilibrium 
(low-frequency) and frozen (high-frequency) values. Here B and A are defined by 

QQA 
2( 1 + P)’ B =  

where 

and 
sz = W7Cpr/Cpe 

Q = R 2 C / C V e C p f .  

A, = (Yf/Ye)’ 

( Y f - l ) 2 c .  
f -  2yfraf ’ 

The high-frequency limits are 

and 

a -  

and the low-frequency limits are 

A,= 1, (42) 

mR2c 
=- QQ 

2( 1 4- Q2) 2cpe c,, ) ’ 
Be = (43) 

where p, is the bulk viscosity. 

in the discussion of the numerically calculated results in later sections. 
The ‘exact) linearized values of attenuation rate and speed of sound will be used 
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5. The Pernet & Payne method 
This method was originally devised to model nonlinear wave propagation in a tube 

filled with gas with a known decay rate due to wall friction. Perset & Payne then went 
on to apply the technique to wave propagation in the atmosphere, and, in fact, it can 
in principle be applied to all wave propagation which satisfies the following two 
conditions: firstly, an analytic model must exist for the growth of harmonics in the 
equivalent isentropic flow and, secondly, the linear decay rate for the particular type 
of wave and attenuation mechanism must be known. These conditions are necessary 
because the method basically assumes that at any point in the flow harmonic growth 
depends on the amplitude of the fundamental, and is as in isentropic flow, and that 
dissipation is a linear process. 

Our description of the method differs from Pernet & Payne’s in certain respects. 
They consider pressure, but our description is in terms of velocity. Also, their model 
appears to be somewhat inconsistent with a version of the Fubini solution suited to 
initial-value problems being used in a boundary-value problem, whereas our model is 
consistent in this respect. There is also a physical difficulty in applying the method to 
our problem, since only one speed of sound is assumed. This is the case when either c 
is very small or attenuation is caused by some mechanism other than vibrational 
relaxation. However, in our flows with large values of c, a range of sound speed is 
available. We have used the frozen speed of sound since there is some indication that 
wave steepening is governed by the behaviour of the frozen characteristics. This is, 
however, a point to be remembered when the approximate results are compared with 
our exact numerical calculations. 

The technique is easily understood by considering the second harmonic in the wave 
in velocity produced by the boundary condition 

u = ulsinwt at x = 0. (45) 

In  isentropic flow, the rate of change of ii, can be found from the Fubini solution. Thus 
for small u from equation (24) 

Pernet & Payne’s method would appear to assume that the local rate of change of U,, 
due to convection in a decaying wave, is also given by this type of expression. There- 
fore, if the local amplitude of the fundamental in the decaying wave is Til, 

However, according to linear theory U1 = u1 exp ( - a,x), where cxl is equal to aL, the 
decay rate for the fundamental in the wave. What is more, U 2  will also change due to 
dissipation. Hence, if it is assumed that the total rate of change is due to convection 
(given by (47)) and dissipation (given by linear acoustics) the following equation is 
obtained, 
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This is the same type of equation as was obtained by Pernet & Payne. However, 
they only describe its derivation briefly and it may therefore be slightly different from 
ours. With h, = 0 a t  x = 0 the solution is 

where xs here and elsewhere in this section is the isentropic shock formation distance, 
and is used only to simplify the algebra. 

The corresponding general equation for the nth harmonic can then be shown to be 

x ~ - ~  exp ( - nalx) ,  

and Pernet & Payne point out that this equation has a general, if complicated, solu- 
tion. However, we chose the more 1on.g-winded approach of solving the corresponding 
equations for n equals 3, 4, 5, and 6. The solutions are given in the appendix and will 
be compared with numerically calculated results in 8 8. Also, certain general points 
about the method will be made later, but first ways of extending the approach will 
be discussed briefly. Equation (49) might be improved by taking extra terms in 
equation (24)  to describe convective steepening effects in the second harmonic. Thus, 
including the term in r equals one leads to the following equation for Uz, 

\ 

[exp ( - 4a1x) - exp ( - agx)] ' U1 

+ x:(4a1 - a2)3 

A better approximation for the behaviour of the fundamental can also be found 
from this approach. Thus taking the terms in r equals 0 and 1 in equation (24) gives 

so that 

This leads to the following equation for Ti,, 

dh, u x  
- + C C ~ U ,  dx = - L e x p ( - 3 a l x ) ,  4x: 

which has the solution 

1 7  

1 -exp ( -  2a1x) (1 + 2a,x) 
16x: a; 

u1 = ulexp(-alx) - 

(53) 

(54) 

(55) 

I2 P 1 . M  99 
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F 
FIGURE 2. Velocity profiles on the particle path 2, = 71 for flows with 4, = 0.01, c = 2.50, and 

2 = 77. The boundary conditions are: (a )  equation (57); ( b )  equation (58). 

and this gives an indication of the reduction in the amplitude of the fundamental 
due to feeding of the higher harmonics. 

An assessment of the method applied to our problem is given in 8 8 where it is also 
demonstrated that taking more terms in the series expansion leads to a definite 
improvement. 

6. Starting and streaming effects 
Before we can proceed to the discussion of sample numerical results for plane perio- 

dic wave propagation we must consider two secondary effects which emerged during 
the numerical calculations. Both effects are clearly demonstrated on figure 2 which 
shows velocity profiles on the particle path 2o = 71 for the two boundary conditions 

and 
I xp = 0 for t ,  < 0, 

x , = ~ ( ~ - c o s w t , )  for t,aO, 
U 

w 

I xp = 0 for t, < 0,  

U1sinwtp for t ,  2 0, xp=-o 

(57) 

with Q, = 0.01, c = 2.50, and G = 7 ~ .  A phase shift has been introduced in the bottom 
curve to make the waves coincide at  large y. 

The transient starting effect will not be discussed in detail. t manifests itself by 

For the boundary condition (57) the dominating effect is of order 6 and is due to the 
mean displacement of the piston changing to a non-zero value when it is oscillating. 

the first half cycle propagating in a different manner to that o f t  L t of the wave. 



Nonlinear propagation of plane periodic waves 355 

The width of the starting region grows as x4 and its amplitude decays as x-4. This 
behaviour is characteristic of a single pulse in the low-frequency limit as discussed by 
Lighthill (1956). Indeed, if the piston was stopped after a finite time the pulse thus 
created would completely swallow the oscillating motion in the far field, where the 
pulse shape would depend only on the gross features of the piston motion and not on 
the oscillation. I n  our cases where it is the computation rather than the piston which 
is stopped after a finite time the starting effect will nevertheless in the case of the 
boundary condition (57) dominate a larger and larger part of the flow as we move 
away from the piston. 

As already mentioned this start effect is of order e and completely dominates a 
second starting effect of order e2. This smaller effect is related to the discontinuity in 
acceleration a t  t equals zero on the piston path, and a similar effect was observed by 
Blackstock (1964) in solving Burgers’s equation for an oscillating piston. It can be 
observed on the lower curve on figure 2 corresponding to the boundary condition 
(58) which expands the gas initially and does not alter the mean displacement of the 
piston as it oscillates. It will be seen that the starting effect for the latter boundary 
condition is of much smaller amplitude, although the widths of the two effects seem 
to be roughly the same. 

The results $97 and 8 are for flows with equations (58) as the boundary condition. 
This was used in preference to (57) since it was thought that  the steepness of the 
starting effect of order E might lead to shock formation in the flow before shocks 
formed in the continuous wave profile. I n  fact, the general tendency apFears to  be for 
shocks to form simultaneously in either starting effect and in the continuous wave 
profile. However, this point has not been studied in detail. I n  any case, the decay in 
the amplitude of both starting effects was roughly as x-4 and the growth in width 
as roughly d. This proved to be a problem in the numerical calculations, since the 
time for which a computer program can run is limited. Hence, since the starting effect 
is related to those parts of the particle paths close to  the wave front which were 
calculated first, much of the program running time was spent calculating the starting 
effect. 

The continuous wave profiles in figure 2 have means which differ from rest gas 
conditions. I n  fact, the mean in the wave in any variable changes in the near field, 
and then approaches a constant value in the far field which is not equal to the rest 
gas value. The variation in the mean of the velocity wave which manifests itself by 
there being a finite outward velocity i:i the far field is referred to  as acoustic streaming. 
This effect is a direct result of entropy production on particle paths in the flow. 
Although this entropy production is only or order c2 nd dominates only in the near 

amplitude of the continuous wave profile decays from order e to order €2 and smaller 
the effect becomes more noticeable and will eventually far exceed the amplitude of 
the oscillations. 

The various approximate nonlinear theories in general account for entropy produc- 
tion attenuation of the wave but ignore the entropy after it has been produced and 
hence miss an interesting accumulative effect in the flow. 

A simple theory was developed which assumed that the entropy production leads 
t o  a monotonic increase in mean temperature on a particle path in the near field 
whilst the mean pressure remains roughly constant, the underlying idea being that 

field the effect spreads outward and is still of order e2 \ in he far field. Hence, as the 

12-2 
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the pressure can relieve itself as a wave propagating outward. The result is of course 
a monotonic reduction in mean density in the near field, and the mass conservation 
law then leads to a constan,t mean outflow velocity in the far field. This extra flow 
produced by the entropy production in the near field, is in the far field similar to that 
produced by an impulsively started piston, and the numerically found ‘streaming ’ 
quantities were found to obey the linearized shock wave relations (using the equili- 
brium speed of sound) which are of course identical to the linear acoustics relations. 
The theoretical model gave the right order of magnitude for the streaming quantities, 
but numerically it did not quite match the characteristics flow calculations. 

7. Typical results for wave steepening and dissipation 
A large number of flows with pure tone boundary conditions were calculated. Each 

calculation is quite time consuming and it was not considered reasonable to attempt 
to cover all possible values of the parameters. As already mentioned, the flows with 
WT of order one were considered of particular interest. In  this section we discuss just 
one of the calculated flows in order to demonstrate some of the features which emerged 
from the exact numerical calculations and which are not obvious from approximate 
theories. 

Figure 3 shows the development of the pressure wave form with increasing x for 
a flow with x, = - (uJw) sin wtP and 4, = 0.015, c = 1-00, and & = n. This particular 
flow was chosen because i t  demonstrates most of the effects with no single one domi- 
nating. The wave form steepens due to convection in the near field, continues to change 
in the far field due to what we shall describe as linear dispersion and decays in am- 
plitude throughout its propagation a t  a rate close to that predicted by linear theory. 

In  addition to the steepening the wave develops considerable skewness in the near 
field but at 2 N 100 when the amplitude has fallen to 1/100 of its original value the 
steep part is beginning to become localized and this steep region gradually develops 
into a distinct kink which travels through the wave and decays in relative amplitude. 
It is a remarkable feature of figure 3 that the wave has stir1 got a distinct detailed 
structure which the numerical method allows us to calculate even at  such large 
distances that the overall amplitude of the wave has decreased to less than 1/1000 of 
its value a t  x, = 0. We also note that in the last wave profile on figure 3 the streaming 
effect is considerably larger than the wave amplitude. 

The behaviour of the kink can be explained by linear dispersion. The kink is a 
localized high-frequency region which therefore has a higher linear propagation speed 
than the rest of the wave. 

The complete wave development is given on figure 4 ( a )  which shows successive 
velocity profiles on equally spaced particle paths in the flow since the departure from 
straight lines of the particle paths is negligible on the scale of the figure. The wave 
decays with x and has virtually disappeared when 2 is greater than 100. 

On figure 4 (b)  linear dissipation has been removed by multiplying all amplitudes 
by exp (&2,,). We see that the change in overall amplitude on this figure is very small, 
demonstrating that the decay closely obeys linear acoustics. The figure clearly shows 
the starting effect. It also shows the relative movement of parts of the signal relative 
to the frozen characteristics ( P - constant). Thus in the near field the peak converges 
towards the frozen characteristics due to convection whereas in the far field the peak 
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FIGURE 3 (a-c). For legend see page 358. 



358 I .  S. Southern and N .  H .  Johannesen 

1.00008 - 

- 

I 
p  ̂

1.00004 - 

1.000 00 

I I I I I I 

18 20 22 

F 

t 1.000 060 

t 
t p̂  1~000050 

t 
1.000040 1 

18 20 

P 
22 

1.000052 - 

1~000044 - 

I- I I I I I I 
18 20 22 

F 
FIGURE 3. Pressure profiles on successiveAparticle paths for a flow with boundary condition 
equation (58), ti, = 0.015, c = 1.00, and w = 7r. The values of ko are (a )  53.4, ( b )  82, (c) 112, 
(d )  142, ( e )  172, and (f) 187. 
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FIGURE 4. Composite diagrams of wave profiles for the flow defined in figure 3 : 
(a) profiles of Q; ( b )  profiles of exp (d&)Q. 

diverges from this direction, since its rate of propagation is then close to thefrequency- 
dependent linear sound speed which is smaller than the frozen (high-frequency) a,. 
What is more, the kink can be seen to be related to a region of high compression which 
forms in the wave in the near field. The kink propagates at  a rate which is close to a,, 
so that this part of the signal then travels on lines parallel to P = constant throughout 
the far field. 

Figure 4 was reproduced directly from the computer graph-plotter output and is 
therefore not of the same quality as the rest of the figures, which have been traced from 
the graph-plotter output. 
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FIGURE 5. The wave profile at $ = 111 for the flow defined in figure 3 :  (a )  calculated wave; 
( b )  mean and first 13 harmonics. 
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FIGURE 6. The growth and decay of harmonics for the 
flow defined in figure 3. 

8. Fourier analysis and comparison with the Pernet & Payne method 
Any periodic waveform can be expressed as a Fourier series. In our case the Fourier 

coefficients were obtained by a very simple numerical integration process using the 
trapezium rule. Nevertheless, the method appeared satisfactory and some impression 
of its effectiveness can be gained from figure 5 which demonstrates that  the numerically 
calculated wave and the wave made up from the first thirteen numerically calculated 
harmonics are indistinguishable except in the trough. 

We can therefore plot the amplitude of each harmonic as a function of x. An example 
of such a plot is shown in figure 6. It was found that for 2 > 80 the harmonics decayed 
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FIGURE 7. The Pernet & Payne (1971) method approximate growth and decay of 
harmonics for the flow defined in figure 3. 

according to linear acoustics and indeed, because of the particular dissipation mech- 
anism involved, the higher harmonics all decay at  a rate close to the limit of a as ~7 

tends to infinity. 
Plots such as figure 6 only show the amplitude behaviour of the harmonics and do 

not give any information about their relative phases. The actual wave form can 
therefore not always be reconstituted from the information contained in this type 
of figure. This is a drawback in the Pernet & Payne method, which essentially provides 
the same type of information, when it is applied to gases with strong dispersion, 
although this is probably not very serious for air. 

Figure 7 is the equivalent to figure 6, but using the Pernet & Payne method. The 
curves in the two figures have similar overall behaviour but the approximate method 
gives somewhat smaller maximum amplitude of the higher harmonics than those 
found from the exact numerical analysis. 

A clearer comparison is seen on the composite figure 8 which shows the curves for 
the first four harmonics from figures 6 and 7 superimposed. Although the differences 
are noticeable the approximation still gives a good estimate of the behaviour of the 
calculated wave. The decay of the fundamental in figures 6, 7 and 8 was found to be 
very close to that predicted by linear acoustics, demonstrating that the feeding of 
higher harmonics does not significantly affect the total energy in the fundamental. 

There is some indication that the interaction between harmonics in the real flow 
is different from that in the Pernet & Payne model. The difference seems to depend 
on harmonic number, the best agreement being for the third harmonic. The difference 
becomes very large for the high harmonics. D.T. Blackstock suggested some years 
ago in unpublished work and in a recent private communication that a sounder 
approach than that used by Pernet & Payne would be to express the u: term in the 
Fubini solution as the correct combination of terms modelling the actual generation of 
harmonics as described above in tj 3. This leads to an explicit expression for the third 
harmonic, which, however, in our case was found to deviate far more from thenumerical 
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FIaURE 9. Comparison of the developments of the second harmonic in the flow defined in figure 3 : 

(a )  numerical; ( b )  equation (49); ( c )  equation (52) .  

solution than did the Pernet & Payne expression. For higher harmonics the Blackstock 
approach becomes progressively more difficult. It therefore appears that  the effects 
of the various imperfections in the Pernet & Payne approach to some extent cancel out 
in the first few harmonies. 

In  $ 5  we suggested that the Pernet & Payne method might be improved by in- 
cluding higher terms in the series expansion for the Bessel function. Figure 9 demon- 
strates this by comparing (49) and (52) for the second harmonic. Clearly, using the 



Nonlinear propagation of plane periodic waves 363 

improved expression increases the distance over which the approximate and exact 
curves agree. 

9. Conclusions 
We have attempted to demonstrate that the accuracy and capacity of computers 

are now such that it is possible to calculate periodic wave propagation phenomena for 
distances over which the amplitude decays by several orders of magnitude. Our aim 
has been to discuss the methods and to illustrate them by selected results rather than 
to give comprehensive results. This is because we feel that the oscillating piston 
problem, although interesting, lacks direct practical application. The paper should 
therefore be looked at as a first step in a move towards more realistic problems. In 
particular, the extension to the pulsating sphere problem is already under way, and 
there seems no doubt that it will eventually be possible to treat flows with more 
complicated boundary conditions in gases with low vibrational specific heats and in 
mixtures of such gases. 

We do not see our approach as an alternative to approximate analytical methods 
but rather as a means of assessing the accuracy and applicability of such methods. 
This will hopefully lead to a clearer assessment of the conditions under which non- 
linear propagation effects are of practical importance. 

We have had many helpful discussions with Dr J. P. Hodgson and Mr W. A. Scott. 
We are particularly grateful to Dr Hodgson for supplying the original computer 
program for piston-generated pulse propagation on which our numerical approach 
was based. I.S.S. was in receipt of a Research Studentship from the Science Research 
Council. 

Appendix 

For n = 2, 
Equation (50) has the following solutions for n equals 2, 3, 4, 5, and 6. 

(exp[-a,%)-exp( -2alx)]. - U1 u -  - 2xs(2a1 - a,) 
For n = 3, 

3u1 x exp ( - 3a1x). - 
ug = 

3u1 [exp ( -a3x) -exp ( - 3 a , 4  - 
4x: ( 3a1 - a3)2 4x: ( 3a1 - a3) 

For n = 4, 

[exp ( - a,%) - exp ( - 4a1x)] - 2% u -  
- 4(4a1 - a4)3 

- 

For n = 5 .  

U1 2 

3Z(4a1 - 

- 1 25u1 
u5 = [exp ( - a5x) - exp ( - 5a1 x)] 

1 6 ~ g (  501, - a5)* 
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For n = 6, 

I .  8. Southern and N .  H .  Johannesen 

- 34u1 
u g  = [exp ( - a6x) - exp ( - 6a1x)] 2x,”(6a1 -a# 

4x3 12x2 24x ) exp ( - Gals). + + 
(x4+ ( 6 ~ ~ 1 -  a g )  (6a1- as)’ ( 6 ~ 1 -  a6)3 

33u1 - 
24x!(6a1 - a6) 
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